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Structure factor of diffusion-limited aggregation clusters: Local structure and non-self-similarity

C. Oh and C. M. Sorensen
Department of Physics, Kansas State University, Manhattan, Kansas 66506

~Received 6 June 1997!

The structure of diffusion-limited aggregation~DLA ! clusters is studied in reciprocal~momentum! space
using clusters generated by 3d cubic lattice and off-lattice simulations. Log-log plots of the structure factor
S(q) vs the momentum transferq show that for DLA clustersS(q) is not proportional toq2D in the fractal
regime, whereD.2.5 is the mass fractal dimension. A power law behavior is observed only in a limited range
of largeq and, moreover, the exponent is;21.75. A direct comparison with diffusion limited cluster aggre-
gation~DLCA! clusters shows that the two structure factors are the same in the range ofq*0.1a21, wherea
is the monomer radius. We interpret this anomalous behavior of the DLA structure factor as an indication of a
DLCA-like local structure within the DLA cluster, and the length scale of the local structure isl c.10a. The
presence of the critical lengthl c.10a is qualitatively confirmed by real space analyses, which we find are
much less sensitive to this local structure. The existence ofl c such thatRg. l c.a, whereRg is the cluster
radius of gyration, shows that DLA clusters are not self-similar over the entire cluster.
@S1063-651X~98!06301-6#

PACS number~s!: 61.10.Eq, 02.70.2c, 68.70.1w, 05.40.1j
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I. INTRODUCTION

The diffusion-limited aggregation~DLA ! model@1# occu-
pies a special position in the study of aggregating system
the first simulation model to produce an aggregate wit
nontrivial fractal dimension@2# and as a canonical examp
of nonequilibrium growth@3#. It is also remarkable in that its
simple rule of aggregation yields a complex fractal structu
the nature of which is as yet not completely understood@4#.
DLA clusters are fractal in that their mass scales with ove
cluster size with a power law of noninteger fractal dime
sion. The fractal dimension, however, is a global prope
and it cannot discern internal structural details of the clus
Soon after the invention of DLA, it was found using re
space analysis that the clusters were more complex th
simple, self-similar fractal@5#. For example, DLA clusters
require slightly different exponents to describe density c
relations in the radial and tangential directions@6#, and,
therefore, they are self-affine rather than self-similar. Th
has been some thought that these structural subtleties
related to the finite size of the clusters analyzed, but rec
work with very large clusters continues to find non-se
similarity @4#. Lack of self-similarity can imply length scale
beyond overall cluster size and monomer size, but no a
tional length scales have as yet been found.

Despite the long history of DLA study, relatively little
attention has been paid to the structure factor of DLA cl
ters @7–9#. In this paper we use the static structure factor
explore the structure of computer generated, thr
dimensional, DLA aggregates. The structure factor reside
reciprocal space, hence our study differs significantly fr
previous structural studies that have reviewed DLA agg
gates in real space@10–12#. We find that this reciproca
space viewpoint is very able to uncover structural proper
that appear subtle with real space analysis. In particular,
find DLA clusters have a local structure that is quantitativ
similar to the structure of diffusion-limited cluster aggreg
tion ~DLCA! clusters@13,14#. This structure dissolves fo
571063-651X/98/57~1!/784~7!/$15.00
as
a

,

ll
-
,
r.

a

-

e
ere
nt

i-

-
o
-

in

-

s
e

-

length scales greater than a characteristic length of appr
mately ten monomer radii. This ‘‘third’’ length scale quant
fies the manner in which the clusters are not self-similar, a
it is readily apparent in the structure factor. This behavio
distinctly different from the dielectric breakdown mod
~DBM! @15#, which is often cited as yielding structures ve
similar to DLA @3# but for which results available in the
literature do not show this extra, characteristic length in
structure factor@9#. We also show that the overall mass fra
tal behavior is preserved in the structure factor by a la
hump near the inverse cluster size that results from
roughly spherical, hence sharply cut off, density distributio

In what follows we describe our simulation and structu
factor results. We also study real space analysis and s
faint consistency with the definite results of reciprocal spa

II. SIMULATION

We performed DLA simulations on a 3d cubic lattice and
3d off lattice adopting the algorithm introduced by Meak
@16#. For the 3d cubic lattice simulation a seed particle wa
initially placed at the origin. Then a monomer particle w
released on a spherical shell centered at the origin with
radius r rel , called the release radius, and equal tor far15d,
wherer far is the farthest distance between the origin and
monomers of the cluster measured in units of the latt
spacingd. The monomer radius isa5d/2. The released par
ticle was allowed to move randomly to one of the six near
lattice sites with each iteration. While moving, if the partic
came to occupy the nearest-neighbor site of a monome
the cluster, it was stuck to the cluster permanently and a n
particle was released. If the particle wandered off too
from the origin, the particle was killed and a new partic
was released. The killing radius was 3r far . For small clusters
3r far could be smaller thanr far15d. When this happened,
particle would be killed as soon as it was released. To cor
this problem, the killing radius was set to 15d when r far
784 © 1998 The American Physical Society
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57 785STRUCTURE FACTOR OF DIFFUSION-LIMITED . . .
,5d. The simulation was terminated after the desired nu
ber of iterations.

For the 3d off-lattice simulations, the killing radius an
the release radius were determined in the same way. In
case, however, the diffusing particle was allowed to move
any direction~not restricted by the lattice! by a given step
size. After each move, it was tested to determine whether
diffusing particle overlapped with any of the monomers
the cluster. If there was no overlap, it was allowed to diffu
again. If overlap was found, the diffusing monomer w
placed where the first contact was made and the mono
was incorporated into the cluster. In the off-lattice simu
tions we used step size control introduced by Meakin. If
distance between the diffusing particle and the origin w
less thanr far110d, the step size wasd. If the distance was
larger thanr far110d, the step size was 2d. If the distance
was larger thanr far120d, the step size was 4d, etc., continu-
ing in a geometric fashion.

For the purpose of comparison, we also performed DL
simulations on a 3d cubic lattice using the standard alg
rithm @13,14#. The details of the simulation process ha
been reported elsewhere@17#.

III. RESULTS

A. Reciprocal space. The structure factor

The structure factor of an aggregate is defined by

S~qW !5(
i , j

eiqW •~rW i2rW j !. ~1!

HererW i andrW j are the positions of thei th and j th monomers
andqW is the momentum transfer given by

qW 5kW s2kW i , ~2!

where kW i and kW s are the wave vectors of the incident an
scattered fields. For elastic scatteringks5ki52p/l, hence
q5(4p/l)sin(u/2), whereu is the scattering angle andl is
the wavelength of the incident wave. For a self-similar fra
tal aggregate with a fractal dimensionD, assuming a spheri
cal symmetry,S(qW ) has the following three regimes:

S~q!}H N2 for q,1/Rg

q2D for 1/Rg,q,1/a

N for q.1/a,

~3!

whereRg is the cluster radius of gyration,a is the monomer
radius, andN is the number of monomers in the cluster. Th
behavior ofS(q) reflects the fact that for a truly self-simila
fractal aggregate there are only two length scales. These
length scales mark the minimum and maximum distan
between which the object is self-similar. For a cluster
maximum length is the cluster size represented byRg , and
the minimum length is the monomer size represented bya. A
simple argument based on mass conservation@18# and the
continuity of S(q) at q51/Rg shows that

S~q!5Nk0~qa!2D ~4!
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in the fractal regime, where 1/Rg&q&1/a. Herek0 is a pref-
actor defined in the relation

N5k0S Rg

a D D

~5!

between the number of monomers and the radius of gyrat
In previous work we have foundk051.3 for the DLCA pro-
cess andk050.6 for the DLA process in three dimension
@19# and it is well known thatD.1.75 and 2.5, respectively
Even though Eqs.~3! and~4! describe the structure factor o
various fractal aggregates@20–24#, here we find them no
longer simply applicable to DLA aggregates.

Figure 1 shows the structure factors of both DLA a
DLCA clusters with the sameN. Both clusters were create
through simulations on a 3d cubic lattice. The structure fac
tors shown in Fig. 1 were calculated using Eq.~1! and nor-
malized as

S1~q!5
1

N
S~q!. ~6!

The solid line and the dotted line are the structure fac
expected by Eq.~4! for DLCA and DLA clusters, respec
tively. A remarkable point about Fig. 1 is that in a line
regime extending fromq.0.1a21 to a21 bothstructure fac-
tors are described by the DLCA version of Eq.~4!. That is,
they are the same, not only the slope as described byD but
also the absolute value as described by the prefactork0. The
figure also shows that the largeq (qa.p) behaviors of the
two structure factors are very similar to each other, wh
implies that the short range monomer-monomer correlati
are the same as well. Another interesting feature of the D
structure factor in Fig. 1 is that there is a pronounced hu
for qRg.1. This hump rises quickly with decreasingq and
compensates for the21.75 slope, which is too small to ac
count for DLA mass fractal dimension of 2.5. The dash
line in Fig. 1 has a slope of2D522.5 and shows that the

FIG. 1. A comparison of the DLA and the DLCA structur
factors. Both clusters are created through simulations on a c
lattice, and both haveN59060.Rg of the DLA cluster is 50.27a.
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786 57C. OH AND C. M. SORENSEN
hump atq.Rg
21 is related to the monomer length scale

q.a21 in the manner expected by the fractal regime of E
~3!.

The agreement between the DLCA and DLA structu
factors from the intermediate to largeq regime, i.e.,q
*0.1a21, shown in Fig. 1 means that the local environme
of a DLA cluster is very similar to that of a DLCA cluste
where ‘‘local’’ implies length scales ranging up to;10a.
We offer two qualitative arguments why this is so by co
paring the growth mechanisms of DLA and DLCA cluste
First, consider an early stage of the DLCA process when
average cluster size is small and there are still plenty
monomers left. At such a stage, the monomer-cluster c
sion would have a significant contribution to the clus
growth. Therefore, if one were to follow a particular clust
and watch how it grows, it would be impossible to te
whether it is a DLCA or a DLA process. Only when th
cluster size is large and monomers are sufficiently deple
would it be clear that it is not DLA.

Second, the essence of the DLA process is the additio
particles to a cluster through the diffusive motion of mon
mer particles. The asymptotic structure of a DLA cluster
achieved when a cluster is much greater than the diffus
particles. However, even then~and throughout the aggrega
tion process! it is only a small section of a cluster that
particular monomer particle sees when close to a large c
ter and, hence, about to join the cluster. This situation
more like the early stage of the DLCA process because
joining monomer attaches to a comparatively sized sub
tion of the cluster. It is the diffusive nature of the motion th
determines how the monomers are arranged locally. Hen
local DLCA-like structure is obtained and preserv
throughout the growth process.

The importance of the diffusive motion can be drama
cally illustrated by comparing the DLA structure factor to t
structure factor of a cluster created in the dielectric bre
down model~DBM! @15#. The DBM structure factor doe
not show any sharp hump nearq;Rg

21 and the slope in the
Rg

21,q,a21 regime is uniform and equal to the fractal d
mension@9#. In other words, the DBM structure factor fo

FIG. 2. The evolution of the DLA structure factor withN. The
clusters are created through on-lattice simulation. The inset sh
the closeup of the DLA and the DLCA structure factor forN510.
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lows the generic pattern expected for a self-similar frac
cluster as described by Eq.~3!, but the DLA structure factor
does not. This abnormal behavior of the DLA structure fa
tor does not appear to be the result of the finite size ef
because the similarly sized DBM clusters do not show suc
peculiar structure factor. This difference between DLA a
DBM structure factors suggests that there is a generic dif
ence between the two models even though the mean
theory shows that DBM is equivalent to DLA when th
growth parameterh51 @25#. According to the mean field
consideration, the difference between the two models is
the boundary conditions for the corresponding Laplace eq
tions. At the moment, we are not sure how the difference
the boundary conditions would translate into the struct
factors. In terms of the simulations point of view, howeve
the difference lies in the fact that DLA is a kinetics drive
model while DBM is a local instability~noise! driven model.
This subtle difference may not be seen clearly in the r
space analysis. Yet the difference is clearly revealed thro
the structure factor analysis.

We now explore the dependency of the DLCA-like stru
ture on the overall size of the DLA cluster. In Figs. 2 and
we show severalS1(q) for different values ofN for on- and
off-lattice simulations, respectively. Figure 2 is the avera
of five clusters and Fig. 3 is the average of ten clusters of
same size. Also shown are two straight lines, one repres
ing the DLA-like behavior@S1(q)50.6(qa)22.5# and the
other the DLCA-like behavior@S1(q)51.3(qa)21.75# ex-
pected from Eq.~4!. Figures 2 and 3 show that the pattern
the DLA structure factor is independent of the underlyi
lattice structure.

For N510 on a cubic lattice, the structure factor shown
Fig. 2 is indistinguishable from that of DLCA clusters of th
same size. This is reasonable because for such a small
ter, the distinction between the two processes is meaning
For N5100, the DLA structure factors in Figs. 2 and 3 a
ready show a well developed hump and a linear part with
slope 21.75. As the clusters grow further, the linear pa
with the slope of21.75 is extended further to lowerq until
it is finally transformed into a hump atqRg.1. Only for the
largest cluster (N5220 000) is there an indication of a tran
sitory behavior (Rg

21&q&0.1a21) between the linear par

s

FIG. 3. The evolution of the DLA structure factor for off-lattic
simulated clusters.
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57 787STRUCTURE FACTOR OF DIFFUSION-LIMITED . . .
and the hump. From this we can conclude that the DLC
like structure persists over a range of&10a.

Hasmeyet al. @24# showed that forqa.p the general
behavior of the DLCA structure factor can be explained
terms of the nearest-neighbor monomer correlation, i.e.,

S1~q!;11z
sin~2aq!

2aq
, ~7!

wherez is the number of nearest neighbors for each mo
mer,z.2. Here we find that Eq.~7! also describes the struc
ture factor of DLA clusters for the largeq regime~see Fig.
3!. The difference between Figs. 2 and 3 forqa.p is caused
by the different aggregation schemes, on lattice vs off latt
Thus we conclude that DLA aggregates have a DLCA-l
structure from monomer correlation up to;10a.

The next question is, why is there a hump? Here we sh
that it is due to the spherical nature of DLA clusters. Figu
4 and 5 show the structure factors normalized as

S2~q!5
1

N2
S~q! ~8!

for the same DLA clusters shown in Figs. 2 and 3. Al
plotted is the structure factor of a sphere calculated with
Rayleigh-Gans theory,S(q)5@3(sinqR2qRcosqR)/(qR)3#2,
where R is the sphere radius. Note thatRg5A3/5R for a
homogeneous sphere. The figures show that forqRg;1,
S2(q) is the same regardless of the cluster size. A comp
son with the sphere structure factor shows a strong simila
between the sphere structure factor and the DLA struc
factor, more so for larger clusters. This close similarity i
plies that the structure of the hump is strongly influenced
the spherical shape of the clusters. According to Garik@26#,
the shape of the DLA clusters asymptotically approache
spherically isotropic shape. This evolution is somewhat in
cated in Figs. 4 and 5. As the clusters grow, the DLA str

FIG. 4. A comparison of the hump in the DLA structure fact
with the sphere structure factor. The sphere structure factor is
culated with the Rayleigh-Gans theory. With increasingN, the
shape of the hump becomes increasingly similar to that of
sphere structure factor. The clusters are created through on-la
simulation.
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ture factor follows the sphere structure factor over an
creasing range ofq, hence has a more spherelike charac
For large clusters in Figs. 4 and 5, not only the shape of
first hump but also the positions of the second and poss
the third peaks agree well with the sphere structure facto

We may now summarize the results above to obtain
complete description of the structure factor of a DLA agg
gate. There are three length scales involved, monomer siza,
an intermediate length scalel c.10a, and the cluster size
Rg . For q> l c

21 the DLA structure factor is well describe
by the DLCA structure factor. This includes the monome
monomer nearest-neighbor correlation regimeq.a21 and
the regime l c

21<q<a21, where the correlation betwee
many monomers, i.e., subsections of the cluster, is quan
tively DLCA-like. For our largest clusters the regionRg

21

<q< l c
21 is ill-defined, and future work with yet larger clus

ters should examine this region more thoroughly. Regard
of that, nearq.Rg

21 a large hump appears that is the res
of the overall spherical shape of the DLA cluster. Two im
portant conclusions may then be drawn:~i! the local, i.e.,
length scale less than 10a, structure of a DLA cluster is
quantitatively similar to DLCA clusters, and~ii ! the DLA
aggregate is not self-similar over the entire range fr
monomer to cluster size because of the intermediate len
scalel c .

In order to further understand the local structure of DL
clusters and to confirm the existence ofl c , in the following
sections we analyze DLA clusters with various methods
real space.

B. Real space

1. The two-point correlation function

The two-point correlation functiong(r ) was calculated
for the DLA clusters created through off lattice simulation
First a monomer was chosen randomly. Then the distancr
between the chosen monomer and all the other monom
were calculated. The histogramN(r ,D) of the distance dis-
tribution was obtained by counting the number of distan
in the interval (r ,r 1D). The histogram was averaged fo
5000 different choices of monomers. From the histogra
the two-point correlation function was readily obtained as

al-

e
ice

FIG. 5. The same as Fig. 4 for off-lattice simulated clusters.
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788 57C. OH AND C. M. SORENSEN
g~r !5
N~r ,D!

4pr 2D
. ~9!

This correlation function has been extensively studied
DLA clusters by many authors and found to be

g~r !;r D2dh~r /j!, ~10!

where d is the space dimension andh(r /j) is the cutoff
function. In many cases, however, the resolutionD was too
large ~a few lattice spacing! to reveal the local structure
Moreover, the short range behavior of the correlation fu
tion of a DLA cluster has never been analyzed in conjunct
with the structure factor.

Figure 6 showsg(r ) calculated for clusters withN
55000 and 30 000 withD50.1d. The power law behavior
expected by Eq.~10! is illustrated by straight lines with a
slope20.5. The peaks atr /d51.0 andr /d51.9860.01~ob-
tained with D50.01d) correspond to the first and secon
nearest monomer positions. Similar structures have been
served both in hard sphere packing@27# and DLCA @24#.
From the position of the second peak we estimate the a
age angle between two successive bondings in a DLA clu
to be;11°.

A comparison between a straight line representingr D2d

and the calculatedg(r ) shows that forN55000g(r ) has not
fully developed the expected linear behavior indicative o
power law on a log-log plot. ForN530 000,g(r ) shows the
linear, power law behavior in the range of 5d&r &30d,
which is only about a decade. The upper limit of the ran
r .30d shows a reasonable agreement with the average
dius of gyration of the clusters, which we calculated to
Rg538d. More interesting for our work here is that the valu
for the lower limit r /d.5 is twice as large as the valu
reported for DLCA clusters by Hasmeyet al., indicating a
longer transient regime for DLA clusters. Recall thatd
52a. We believe that this transient behavior ofg(r ) in the
range 1&r /a&10 is a faint, real-space realization of th

FIG. 6. Two-point correlation function of DLA clusters. Th
data curve forN55000 is shifted downward by a decade for t
clarity of the illustration. The straight lines show the expect
power law behavior,r D2d.
r

-
n

b-

r-
er

a

e
a-

e

short range DLCA-like structure shown more intensely in t
q-space structural representations ofS(q) in the rangel c

21

(.0.1a21)&q&a21.
In order to find the cutoff function,g(r )r d2D is plotted in

Fig. 7 for N530 000. By fitting the data fromr /d510 to
135 to a stretched exponential function,;exp@2(r/a)b#, we
find a.1.68Rg and b53.4. A Gaussian cutoff function
proved too slow to adequately fit the data, especially
large r . According to Jullien@28#, a sharp cutoff function
such as exp@2(r/a)b# with b53.4 should lead to a hump in
the structure factor forq;Rg

21 . In other words, the hump in
the structure factor is the result of the cutoff function bei
so sharp. This is consistent with our conclusion that
hump results from the spherical shape of the DLA clus
because a sphere has a sharp cutoff.

2. Box counting

The clusters created by the on-lattice simulation were
vestigated using the box counting method instead of the t
point correlation function. The reason why we chose the b

FIG. 7. The cutoff function~dashed line! for a DLA cluster with
N530 000. The solid line is a fit using a stretched exponen
function. The dot-dashed line is a cutoff function of a sphere w
the sameRg .

FIG. 8. logN(l) vs logl/d for cubic lattice simulated DLA clus-
ters withN5220 000.
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57 789STRUCTURE FACTOR OF DIFFUSION-LIMITED . . .
counting method was because the discrete nature of the
tice made it impossible to obtain a smoothg(r ) especially at
short range.

We considered a sphere of radiusl centered on an arbi
trarily chosen monomer~not necessarily at the center! and
counted the number of monomers in the sphereN( l ). The
value of l was not limited to remain within the nearest ed
of the cluster because we wish to compare this real sp
method to the reciprocal space, structure factor result wh
by Eq. ~1!, has no restriction. The averageN( l ) was com-
puted by performing this procedure for 10 000 random
chosen centers. Figure 8 showsN( l ) vs l averaged for five
clusters withN5220 000. Because the centers of our sa
pling spheres can lie anywhere within the cluster, t
method yields the average local structure whenl is small. By
fitting the data froml /d510 to 100, we found the slope to b
2.47, which is in good agreement with the fractal dimensi
For l /d&10 the plot continuously curves to a lesser slo
with decreasingl , hence smaller effective fractal dimensio
This, we contend, is a faint, qualitative indication of th
DLCA-like structure readily apparent inq space.

3. Radius of gyration

We investigated the radius of gyration with two differe
approaches. First, following the traditional analysis, the
dius of gyrationRg(N) was calculated for given values ofN
as a DLA cluster grew. The other approach is similar to
box counting method above in that we considered sphere
radiusl centered on randomly chosen monomers. The nu
ber of monomers within the sphereN( l ) was counted and the
radius of gyration of the spherical section of the clus
Rg( l ) was calculated as a function ofl . N( l ) andRg( l ) were
averaged for 10 000 different choices of the centers.

Figures 9 and 10 show the result for on- and off-latt
simulations. By fitting logRg vs logN data in Fig. 9 to a linear
function fromN5100 to 220 000, we find a slope of 0.403
to imply a fractal dimensionD52.48 as expected for a 3d

FIG. 9. A comparison of logRg vs logN for centered and off-
centered calculations.N5220 000.
at-

ce
h,

-
s

.
e

-

e
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-

r

DLA aggregate. Note, however, that for both lattices and
both N vs Rg centered on the cluster and averaged o
randomly chosen centers, deviations to higher slopes, he
smaller effective fractal dimension, occur forN,100. Once
again, these real space results faintly show that the lo
structure throughout the cluster has an effective fractal
mension less than the global dimension, i.e., it is m
DLCA-like as quantitatively demonstrated inq space. Both
Figs. 9 and 10 show more curvature for the off-cente
analysis than the centered analysis. The off-centered ana
is a truer test of fractal scaling because it does not empha
the special center point of the cluster. Thus the off-cente
analysis shows that the DLA cluster is not strictly se
similar, in agreement with the structure factor analysis. B
these analyses affect an average over all points in the clu

IV. CONCLUSIONS

The structure factor of DLA aggregates does not sh
simple scaling described byq2D in the rangeRg

21&q
&a21, whereD is the mass fractal dimension of the aggr
gate. Instead, a third length scalel c;10a is needed to de-
scribeS(q). For q* l c

21 the DLA S(q) is essentially identi-
cal to the DLCA S(q). This result indicates that the loca
strucuture, i.e., length scales less than 10a, of a DLA aggre-
gate is quantitatively similar to a DLCA aggregate. The la
of simple scaling for DLA is also distinctly different from
DBM structures, which are otherwise very similar to DLA
Attempts to see this local structure in real space analyse
DLA clusters were qualitatively successful but much le
distinct than the reciprocal space analysis ofS(q). Thus the
reciprocal space analysis is a powerful method to explore
structural subtleties of aggregates.
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