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Structure factor of diffusion-limited aggregation clusters: Local structure and non-self-similarity
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The structure of diffusion-limited aggregatidBLA) clusters is studied in reciproc@nomentum space
using clusters generated byl 2ubic lattice and off-lattice simulations. Log-log plots of the structure factor
S(qg) vs the momentum transfer show that for DLA clustersS(q) is not proportional tay~P in the fractal
regime, wherd=2.5 is the mass fractal dimension. A power law behavior is observed only in a limited range
of largeq and, moreover, the exponent+is—1.75. A direct comparison with diffusion limited cluster aggre-
gation(DLCA) clusters shows that the two structure factors are the same in the raggeOofa 1, wherea
is the monomer radius. We interpret this anomalous behavior of the DLA structure factor as an indication of a
DLCA-like local structure within the DLA cluster, and the length scale of the local structure=i$0a. The
presence of the critical length=10a is qualitatively confirmed by real space analyses, which we find are
much less sensitive to this local structure. The existence stich thatR;>1.>a, whereR is the cluster
radius of gyration, shows that DLA clusters are not self-similar over the entire cluster.
[S1063-651%98)06301-9

PACS numbgs): 61.10.Eq, 02.70-c, 68.70+w, 05.40:+]

I. INTRODUCTION length scales greater than a characteristic length of approxi-
mately ten monomer radii. This “third” length scale quanti-
The diffusion-limited aggregatiotDLA) model[1] occu-  fies the manner in which the clusters are not self-similar, and
pies a special position in the study of aggregating systems asis readily apparent in the structure factor. This behavior is
the first simulation model to produce an aggregate with alistinctly different from the dielectric breakdown model
nontrivial fractal dimension2] and as a canonical example (DBM) [15], which is often cited as yielding structures very
of nonequilibrium growtH 3]. It is also remarkable in that its similar to DLA [3] but for which results available in the
simple rule of aggregation yields a complex fractal structureliterature do not show this extra, characteristic length in the
the nature of which is as yet not completely understptld  structure factof9]. We also show that the overall mass frac-
DLA clusters are fractal in that their mass scales with overaltal behavior is preserved in the structure factor by a large
cluster size with a power law of noninteger fractal dimen-hump near the inverse cluster size that results from the
sion. The fractal dimension, however, is a global propertyyoughly spherical, hence sharply cut off, density distribution.
and it cannot discern internal structural details of the cluster. In what follows we describe our simulation and structure
Soon after the invention of DLA, it was found using real factor results. We also study real space analysis and show
space analysis that the clusters were more complex than faint consistency with the definite results of reciprocal space.
simple, self-similar fracta[5]. For example, DLA clusters
require slightly different exponents to describe density cor-
relations in the radial and tangential directiof@, and, II. SIMULATION
therefore, they are self-affine rather than self-similar. There
has been some thought that these structural subtleties were We performed DLA simulations on ad3cubic lattice and
related to the finite size of the clusters analyzed, but recerd off lattice adopting the algorithm introduced by Meakin
work with very large clusters continues to find non-self-[16]. For the 31 cubic lattice simulation a seed particle was
similarity [4]. Lack of self-similarity can imply length scales initially placed at the origin. Then a monomer particle was
beyond overall cluster size and monomer size, but no addireleased on a spherical shell centered at the origin with the
tional length scales have as yet been found. radiusr ., called the release radius, and equar g+ 55,
Despite the long history of DLA study, relatively little wherery, is the farthest distance between the origin and the
attention has been paid to the structure factor of DLA clusmonomers of the cluster measured in units of the lattice
ters[7—9]. In this paper we use the static structure factor tospacingd. The monomer radius = 6/2. The released par-
explore the structure of computer generated, threeticle was allowed to move randomly to one of the six nearest
dimensional, DLA aggregates. The structure factor resides ifattice sites with each iteration. While moving, if the particle
reciprocal space, hence our study differs significantly fromcame to occupy the nearest-neighbor site of a monomer of
previous structural studies that have reviewed DLA aggrethe cluster, it was stuck to the cluster permanently and a new
gates in real spacfl0-12. We find that this reciprocal particle was released. If the particle wandered off too far
space viewpoint is very able to uncover structural propertiefrom the origin, the particle was killed and a new particle
that appear subtle with real space analysis. In particular, wevas released. The killing radius was;3. For small clusters
find DLA clusters have a local structure that is quantitatively3r,, could be smaller thang,,+54. When this happened, a
similar to the structure of diffusion-limited cluster aggrega- particle would be killed as soon as it was released. To correct
tion (DLCA) clusters[13,14). This structure dissolves for this problem, the killing radius was set to d%hen rq,,
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<546. The simulation was terminated after the desired num- 104 ST T T T T 1T T T T
ber of iterations. =

For the 3 off-lattice simulations, the killing radius and -
the release radius were determined in the same way. In this 103
case, however, the diffusing particle was allowed to move in -
any direction(not restricted by the lattigeby a given step -
size. After each move, it was tested to determine whether the 102
diffusing particle overlapped with any of the monomers of E
the cluster. If there was no overlap, it was allowed to diffuse -
again. If overlap was found, the diffusing monomer was
placed where the first contact was made and the monomer
was incorporated into the cluster. In the off-lattice simula-
tions we used step size control introduced by Meakin. If the 100

S (9

101 E °

distance between the diffusing particle and the origin was
less tharr,+ 106, the step size was. If the distance was
larger thanr¢,+ 108, the step size was® If the distance 10! Lol vl il Y

was larger thams,,+ 2068, the step size wasd} etc., continu- 103 102 101 100 101
ing in a geometric fashion.

For the purpose of comparison, we also performed DLCA
simulations on a 8 cubic lattice using the standard algo-  FIG. 1. A comparison of the DLA and the DLCA structure
rithm [13,14]. The details of the simulation process havefactors. Both clusters are created through simulations on a cubic
been reported elsewhef&7]. lattice, and both havdl=9060.R, of the DLA cluster is 50.24.

qa

Il. RESULTS in the fractal regime, where Rj=q=1/a. Herekg is a pref-

) actor defined in the relation
A. Reciprocal space. The structure factor

The structure factor of an aggregate is defined by N=kg & ° (5)
a
3= iq-(r;=r})
S(a) IEJ e " (1) between the number of monomers and the radius of gyration.

In previous work we have founkl,= 1.3 for the DLCA pro-

cess anky=0.6 for the DLA process in three dimensions

[19] and it is well known thaD=1.75 and 2.5, respectively.

Even though Eqgs3) and(4) describe the structure factor of
S various fractal aggregatd20-24), here we find them no
q=ks—ki, (2)  longer simply applicable to DLA aggregates.

R R Figure 1 shows the structure factors of both DLA and
wherek; and kg are the wave vectors of the incident and DLCA clusters with the samBl. Both clusters were created
scattered fields. For elastic scatterikg=k;=27/\, hence through simulations on adBcubic lattice. The structure fac-
g=(4=/\)sin(6/2), whered is the scattering angle andis  tors shown in Fig. 1 were calculated using E#). and nor-
the wavelength of the incident wave. For a self-similar frac-malized as
tal aggregate with a fractal dimensi@n assuming a spheri-

cal symmetry,S(ci) has the following three regimes: S,(q)= %S(q). 6)

Herer; andFj are the positions of thah andjth monomers
andﬁ is the momentum transfer given by

N?  for g<1/R,
D The solid line and the dotted line are the structure factor
S(q)>1 d for 1Ry<q<l/a 3 expected by Eq(4) for DLCA and DLA clusters, respec-
N for q>1/a, tively. A remarkable point about Fig. 1 is that in a linear
regime extending frong=0.1a"! to a~ ! bothstructure fac-
whereRy is the cluster radius of gyratiom, is the monomer tors are described by the DLCA version of HEd). That is,
radius, andN is the number of monomers in the cluster. Thisthey are the same, not only the slope as describeD Iyt
behavior ofS(q) reflects the fact that for a truly self-similar also the absolute value as described by the pref&gtorhe
fractal aggregate there are only two length scales. These twigure also shows that the large(ga> w) behaviors of the
length scales mark the minimum and maximum distanceswvo structure factors are very similar to each other, which
between which the object is self-similar. For a cluster theimplies that the short range monomer-monomer correlations
maximum length is the cluster size representedRgy and  are the same as well. Another interesting feature of the DLA
the minimum length is the monomer size represented.lly  structure factor in Fig. 1 is that there is a pronounced hump
simple argument based on mass conservdti@} and the for qRy=1. This hump rises quickly with decreasingand
continuity of S(q) atq= 1/Ry shows that compensates for the 1.75 slope, which is too small to ac-
count for DLA mass fractal dimension of 2.5. The dashed
S(g)=Nky(qa) P (4) line in Fig. 1 has a slope of D= —2.5 and shows that the
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FIG. 2. The evolution of the DLA structure factor with. The FIG. 3. The evolution of the DLA structure factor for off-lattice

clusters are created through on-lattice simulation. The inset show&mulated clusters.

the closeup of the DLA and the DLCA structure factor f=10. 15,5 the generic pattern expected for a self-similar fractal

cluster as described by E(®), but the DLA structure factor

hump atq:R is related to the monomer length scale atdoes not. This abnormal behavior of the DLA structure fac-
g=a" ! in the manner expected by the fractal regime of Eq.tor does not appear to be the result of the finite size effect
3. because the similarly sized DBM clusters do not show such a

The agreement between the DLCA and DLA structurepeculiar structure factor. This difference between DLA and
factors from the intermediate to largge regime, i.e.,q DBM structure factors suggests that there is a generic differ-
=0.1a" %, shown in Fig. 1 means that the local environmentence between the two models even though the mean field
of a DLA cluster is very similar to that of a DLCA cluster, theory shows that DBM is equivalent to DLA when the
where “local” implies length scales ranging up te10a. growth parametem=1 [25]. According to the mean field
We offer two qualitative arguments why this is so by com-consideration, the difference between the two models is in
paring the growth mechanisms of DLA and DLCA clusters.the boundary conditions for the corresponding Laplace equa-
First, consider an early stage of the DLCA process when th&ons. At the moment, we are not sure how the difference in
average cluster size is small and there are still plenty ofthe boundary conditions would translate into the structure
monomers left. At such a stage, the monomer-cluster collifactors. In terms of the simulations point of view, however,
sion would have a significant contribution to the clusterthe difference lies in the fact that DLA is a kinetics driven
growth. Therefore, if one were to follow a particular cluster model while DBM is a local instabilitynoise driven model.
and watch how it grows, it would be impossible to tell This subtle difference may not be seen clearly in the real
whether it is a DLCA or a DLA process. Only when the space analysis. Yet the difference is clearly revealed through
cluster size is large and monomers are sufficiently depletedhe structure factor analysis.
would it be clear that it is not DLA. We now explore the dependency of the DLCA-like struc-

Second, the essence of the DLA process is the addition dbire on the overall size of the DLA cluster. In Figs. 2 and 3
particles to a cluster through the diffusive motion of mono-we show severab,; (q) for different values oN for on- and
mer particles. The asymptotic structure of a DLA cluster isoff-lattice simulations, respectively. Figure 2 is the average
achieved when a cluster is much greater than the diffusingf five clusters and Fig. 3 is the average of ten clusters of the
particles. However, even theiand throughout the aggrega- same size. Also shown are two straight lines, one represent-
tion process it is only a small section of a cluster that a ing the DLA-like behavior[S;(q)=0.6(qa) >°] and the
particular monomer particle sees when close to a large clusther the DLCA-like behaviofS;(q)=1.3(qa) *"9 ex-
ter and, hence, about to join the cluster. This situation ipected from Eq(4). Figures 2 and 3 show that the pattern of
more like the early stage of the DLCA process because ththe DLA structure factor is independent of the underlying
joining monomer attaches to a comparatively sized subsedattice structure.
tion of the cluster. It is the diffusive nature of the motion that For N=10 on a cubic lattice, the structure factor shown in
determines how the monomers are arranged locally. HenceFig. 2 is indistinguishable from that of DLCA clusters of the
local DLCA-like structure is obtained and preservedsame size. This is reasonable because for such a small clus-
throughout the growth process. ter, the distinction between the two processes is meaningless.

The importance of the diffusive motion can be dramati-For N=100, the DLA structure factors in Figs. 2 and 3 al-
cally illustrated by comparing the DLA structure factor to the ready show a well developed hump and a linear part with the
structure factor of a cluster created in the dielectric breakslope —1.75. As the clusters grow further, the linear part
down model(DBM) [15]. The DBM Structure factor does with the slope of—1.75 is extended further to lower until
not show any sharp hump nequ and the slope in the it is finally transformed into a hump &R,=1. Only for the
Ry l<g<a~? regime is uniform and equal to the fractal di- largest cluster =220 000) is there an indication of a tran-
men5|on[9] In other words, the DBM structure factor fol- sitory behavior Ry 1<g=0.1a" %) between the linear part
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FIG. 4. A comparison of the hump in the DLA structure factor
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FIG. 5. The same as Fig. 4 for off-lattice simulated clusters.

with the sphere structure factor. The sphere structure factor is cal-

culated with the Rayleigh-Gans theory. With increasiNg the

ture factor follows the sphere structure factor over an in-

shape of the hump becomes increasingly similar to that of th&r€@sing range afl, hence has a more spherelike character.
sphere structure factor. The clusters are created through on-lattide0r large clusters in Figs. 4 and 5, not only the shape of the

simulation.

and the hump. From this we can conclude that the DLCA-

like structure persists over a range=sfl0a.

Hasmeyet al. [24] showed that forga> 7 the general

first hump but also the positions of the second and possibly
the third peaks agree well with the sphere structure factor.
We may now summarize the results above to obtain a
complete description of the structure factor of a DLA aggre-
gate. There are three length scales involved, monomeansize

behavior of the DLCA structure factor can be explained inan intermediate length scalg=10a, and the cluster size

terms of the nearest-neighbor monomer correlation, i.e.,

in(2
Sl(q)~1+z%, (7)

Ry. For g=I_"* the DLA structure factor is well described
by the DLCA structure factor. This includes the monomer-
monomer nearest-neighbor correlation regigqea ! and

the regimelc_1$qsa‘1, where the correlation between
many monomers, i.e., subsections of the cluster, is quantita-

wherez is the number of nearest neighbors for each monotjvely DLCA-like. For our largest clusters the regiﬁgl
mer,z=2. Here we find that E¢(7) also describes the struc- <q=I;'is ill-defined, and future work with yet larger clus-

ture factor of DLA clusters for the largg regime(see Fig.

3). The difference between Figs. 2 and 3 f@> 7 is caused
by the different aggregation schemes, on lattice vs off lattice
Thus we conclude that DLA aggregates have a DLCA-like

structure from monomer correlation up t010a.

The next question is, why is there a hump? Here we sho
that it is due to the spherical nature of DLA clusters. Figuresé1

4 and 5 show the structure factors normalized as

1
Sz(Q):mS(CI) 8

ters should examine this region more thoroughly. Regardless
of that, nearcr:Rg;l a large hump appears that is the result
of the overall spherical shape of the DLA cluster. Two im-
portant conclusions may then be drawi: the local, i.e.,
length scale less than &p structure of a DLA cluster is

Wuantitatively similar to DLCA clusters, an@i) the DLA

ggregate is not self-similar over the entire range from
monomer to cluster size because of the intermediate length
scalel .

In order to further understand the local structure of DLA
clusters and to confirm the existencel gf in the following
sections we analyze DLA clusters with various methods in

for the same DLA clusters shown in Figs. 2 and 3. Alsoreal space.
plotted is the structure factor of a sphere calculated with the

Rayleigh-Gans theoryS(q) =[3(sigR—qRcoiR/(qR)*],
whereR is the sphere radius. Note thRt=\3/5R for a
homogeneous sphere. The figures show thatgBg~1,

B. Real space

1. The two-point correlation function

S,(q) is the same regardless of the cluster size. A compari- The two-point correlation functiog(r) was calculated
son with the sphere structure factor shows a strong similarityor the DLA clusters created through off lattice simulations.
between the sphere structure factor and the DLA structur&irst a monomer was chosen randomly. Then the distances
factor, more so for larger clusters. This close similarity im-between the chosen monomer and all the other monomers
plies that the structure of the hump is strongly influenced bywere calculated. The histogral(r,A) of the distance dis-

the spherical shape of the clusters. According to G2,

tribution was obtained by counting the number of distances

the shape of the DLA clusters asymptotically approaches @ the interval ¢,r +A). The histogram was averaged for
spherically isotropic shape. This evolution is somewhat indi-5000 different choices of monomers. From the histogram,
cated in Figs. 4 and 5. As the clusters grow, the DLA structhe two-point correlation function was readily obtained as
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FIG. 6. Two-point correlation function of DLA clusters. The FIG. 7. The cutoff functior{dashed lingfor a DLA cluster with
data curve folN=5000 is shifted downward by a decade for the N=30 000. The solid line is a fit using a stretched exponential
clarity of the illustration. The straight lines show the expectedfunction. The dot-dashed line is a cutoff function of a sphere with

power law behaviorfP 9, the sameRy .
N(r,A) short range DLCA-like structure shown more intensely in the
r)y= . 9 - i i -1
a(r) AT 2A ©) g-space structural representationsSgfy) in the rangel

(=0.1a YHY=qg=a L
In order to find the cutoff functiorg(r)r¢-P is plotted in
This correlation function has been extensively studied forFig. 7 for N=30 000. By fitting the data fromn/5=10 to

DLA clusters by many authors and found to be 135 to a stretched exponential functionexd —(r/a)?], we
find a=1.68R, and B=3.4. A Gaussian cutoff function
g(r)~rP=dh(r/¢) (10) proved too slow to adequately fit the data, especially for

large r. According to Jullien[28], a sharp cutoff function

such as eXp-(r/a)?] with 8=3.4 should lead to a hump in
whered is the space dimension arfu(r/¢) is the cutoff  the structure factor fog~R; *. In other words, the hump in
function. In many cases, however, the resolutionvas to0  the structure factor is the result of the cutoff function being
large (a few lattice spacingto reveal the local structure. so sharp. This is consistent with our conclusion that the

Moreover, the short range behavior of the correlation funchymp results from the spherical shape of the DLA cluster
tion of a DLA cluster has never been analyzed in conjunctiomecause a sphere has a sharp cutoff.

with the structure factor.

Figure 6 showsg(r) calculated for clusters withN
=5000 and 30 000 witlA =0.18. The power law behavior
expected by Eq(]_O) is illustrated by Straight lines with a The clusters created by the on-lattice simulation were in-
slope—0.5. The peaks at' = 1.0 andr/5=1.98+0.01(ob-  Vestigated using the box counting method instead of the two-
tained with A=0.015) correspond to the first and second Point correlation function. The reason why we chose the box
nearest monomer positions. Similar structures have been ob-
served both in hard sphere packif@7] and DLCA [24].

2. Box counting

IIIIIIIII|IIII|IIII|I/I/II

—

linear, power law behavior in the range ofs5r=<306,
which is only about a decade. The upper limit of the range
r=3056 shows a reasonable agreement with the average ra-

From the position of the second peak we estimate the aver- 5 -
age angle between two successive bondings in a DLA cluster - -
to be ~11°. 4 -

A comparison between a straight line representiig® - ]
and the calculated(r) shows that foN=5000g(r) has not = 3 B -
fully developed the expected linear behavior indicative of a > - ]
power law on a log-log plot. FAl=30 000,g(r) shows the gﬂN » B -

dius of gyration of the clusters, which we calculated to be 0 M T
Ry=384. More interesting for our work here is that the value 0.0 0.5 Lo s 0 a5

for the lower limitr/6=5 is twice as large as the value : ) : ' : :
reported for DLCA clusters by Hasmest al,, indicating a log 1/8

longer transient regime for DLA clusters. Recall that 10

=2a. We believe that this transient behaviorg(fr) in the FIG. 8. log\(l) vs log/é for cubic lattice simulated DLA clus-

range I=r/a<10 is a faint, real-space realization of the ters withN=220 000.
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FIG. 9. A comparison of log, vs logN for centered and off-

FIG. 10. Th Fig. 9 for off-lattice simulat lusters.
centered calculation®N=220 000. G e same as Fig. 9 for o ce ulated clusters

N=30 000.

counting method was because the discrete nature of the labLA aggregate. Note, however, that for both lattices and for
tice made it impossible to obtain a smogffr) especially at both N vs Ry centered on the cluster and averaged over
short range. randomly chosen centers, deviations to higher slopes, hence
We considered a sphere of radiusentered on an arbi- smaller effective fractal dimension, occur f 100. Once
trarily chosen monomefnot necessarily at the centeaind  again, these real space results faintly show that the local
counted the number of monomers in the sphe(¢). The  structure throughout the cluster has an effective fractal di-
value ofl was not limited to remain within the nearest edgemension less than the global dimension, i.e., it is more
of the cluster because we wish to compare this real spad®LCA-like as quantitatively demonstrated qnspace. Both
method to the reciprocal space, structure factor result whictkigs. 9 and 10 show more curvature for the off-centered
by Eg. (1), has no restriction. The avera@gl) was com-  analysis than the centered analysis. The off-centered analysis
puted by performing this procedure for 10 000 randomlyis a truer test of fractal scaling because it does not emphasize
chosen centers. Figure 8 shoNg$l) vs| averaged for five the special center point of the cluster. Thus the off-centered
clusters withN=220 000. Because the centers of our sam-analysis shows that the DLA cluster is not strictly self-
pling spheres can lie anywhere within the cluster, thissimilar, in agreement with the structure factor analysis. Both
method yields the average local structure whénsmall. By  these analyses affect an average over all points in the cluster.
fitting the data from /8= 10 to 100, we found the slope to be
2.47, which is in good agreement with the fractal dimension. IV. CONCLUSIONS
For 1/6=<10 the plot continuously curves to a lesser slope
with decreasind, hence smaller effective fractal dimension. _ The structure factor of DLA aggregates does_nlot show
This, we contend, is a faint, qualitative indication of the Simple scaling described bg~° in the rangeR;"'<q

DLCA-like structure readily apparent iq space. <a~ !, whereD is the mass fractal dimension of the aggre-
gate. Instead, a third length scdle-10a is needed to de-
3. Radius of gyration scribeS(q). Forg=I_"* the DLA S(q) is essentially identi-

cal to the DLCAS(q). This result indicates that the local
strucuture, i.e., length scales less thaa,16f a DLA aggre-
‘gate is quantitatively similar to a DLCA aggregate. The lack

We investigated the radius of gyration with two different
approaches. First, following the traditional analysis, the ra

dius of gyrationRy(N) was calculated for given values If of simple scaling for DLA is also distinctly different from

as a DLA cluster grew. The other approach is similar to theDBM structures, which are otherwise very similar to DLA.

bo; coluntmg mgthod abgve Im tI;]at we considered s%heres %tempts to see this local structure in real space analyses of
radius| centered on randomly chosen monomers. The nump, A ¢jysters were qualitatively successful but much less

ber of monomers within the sphelgl) was counted and the  giqinct than the reciprocal space analysisSéf). Thus the

radilus of gylratilon of the fsphgricalf selction d of :he clustere inrocal space analysis is a powerful method to explore the
Ry(l) was calculated as a function bfN(l) andR(1) were structural subtleties of aggregates.

averaged for 10 000 different choices of the centers.

Figures 9 and 10 show the result for on- and off-lattice
simulations. By fitting lo&, vs logN data in Fig. 9 to a linear
function fromN=100 to 220 000, we find a slope of 0.4036  This work was supported by NSF Grant Nos.
to imply a fractal dimensioD =2.48 as expected for ad3 CTS9408153 and CTS9709764.
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